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A new formalism for the paramagnetic spin susceptibility of 
metals using relativistic spin-polarized multiple-scattering 
theory: a temperature-dependent anisotropy effect 
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t Department of Physics, Univelsity of Warwick, Coventry CV4 7AL, UK 
$ Department of Physics, Univelsity of Keele, Keele ST5 5BG, UK 
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Abstract. A new formalism for the static paramagnetic spin susceptibility of metals 
is given which includes a directional dependence on the magnetic response. This 
approach leads to an anisotropic generalized Stoner condition. We applied this theory 
to HCP and FCC cobalt. The starting point was the fully relativistic band structures 
and densities of states of both phases. The calculated susceptibilities show that an 
anisotropy appears in the HCP phase, but is absent for the FCC phase within this 
linear response theory. We also find a temperature dependence of this anisotropy. 
At low temperatures ( < 2500 K ) the easy axis is along the c axis whereas a t  higher 
temperatures it lies in the ab plane. 

1. Introduction 

Recently, magnetic anisotropic effects have been investigated using a first principles 
theory in which both fully relativistic and spin-polarized effects are treated on an 
equal footing [l-41. Even for light elements, this approach is necessary for the study 
of magnetic anisotropy because of the important role of spin-orbit coupling. There 
are some studies of the magnetic anisotropy of cubic systems [5,6] using this theoret- 
ical framework. Although magnetocrystalline anisotropy effects are likely to be more 
important in non-cubic systems, there are few theoretical calculations. 

The magnetic susceptibility has been calculated by many authors with various 
methods. We do not include here a complete review of the literature in this field but 
only refer to those papers which are related to our work. A review is provided in ref- 
erence [7]. Vosko and Perdew [8] and MacDonald and Vosko [9] obtained a expression 
for the static paramagnetic spin susceptibility based upon the spin-density functional 
theory [lo]. Stenzel and Winter [7] and Winter et  a1 [ll] set up a scheme for calculat- 
ing the dynamic spin susceptibility of metals using a spin-polarized multiple-scattering 
framework. Staunton et a/  [12] calculated the static susceptibility for Fe and Ni  within 
the disordered local moment picture. These are all non-relativistic calculations. (Mac- 
Donald and Vosko incorporated some relativistic effects approximately.) 

In this paper we present a new formalism for the static paramagnetic spin sus- 
ceptibility which corresponds to the relativistic generalization of Stenzel and Winter’s 
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work. A spatial dependence to the magnetic response is found. In particular we find 
a generalized Stoner condit,ion which determines the direction along which the mag- 
netization grows as the paramagnetic/ferromagnetic phase transition is crossed. The 
work is based upon a fully relativistic multiple-scattering (KKR) theory and the local 
spin-density functional formalism. Temperature dependence is also incorporated by 
temperature Green function techniques. Although we show here a static spin suscepti- 
bility formalism, i t  is clear that  it can be later extended to include dynamic effects. For 
example the gaps in the spin-wave spectra and the coupling of spin wave excitations 
to  crystallographic directions can be studied. Furthermore as a first step for the study 
of the magnetic anisotropy of non-cubic systems, the calculation of the homogeneous 
susceptibility which we give in this paper can be viewed as a complementary approach 
to  magnetic anisotropy energy calculations. 

We have applied this formalism to cobalt as a first example. It is a transition metal 
which is ferromagnetic in the non-cubic HCP as well as in the cubic FCC structural 
phase. The orbital component of the magnetic properties is also likely to  be rather 
small making it a suitable system to study initially. Eventually it will be worthwhile 
to  extend this work to  rare-earth materials, many of which have HCP phases. Conse- 
quently it makes sense to  apply our theory to  a HCP material as well as a cubic one. 
Tackling rare-earth materials will be a much more difficult task-f electrons must be 
accounted for as well as s, p and d and orbitsal effects are also important. 

It is well known that  ferromagnetic HCP cobalt is stable up to  a temperature of 
675 I<. Above this temperature it passes into a FCC phase, becoming a paramagnet 
a t  temperatures greater than 1390 I< [13]. In t,his paper we investigate the mag- 
netic instability and its spatial anisotropy by calculating the static paramagnetic spin 
susceptibility for CO in both phases. 

Underlying our analysis of the susceptibility of cobalt is the band structure. Several 
band calculations have been carried out for both HCP and FCC cobalt and ours are 
consistent with them. For HCP CO, early band structure calculations were performed 
by Hodges and Ehrenreich [14] and Wong et a1 [15]. Then Wakoh and Yamashita [16], 
Ishida [17] and Batallm et a1 [18]. calculated majority and minority states by using a 
rigid exchange model. Recently, Ivlatsumoto el a1 [19] calculated a spin-polarized self- 
consistent (SCF) band structure and compared the theoretical momentum densities 
with experimental data  of the magnetic Compton profiles obtained by Timms et al  
[20]. Strange et a1 [21] obtained relativistic spin-polarized band structures with the 
magnetization lying along both the c and a axes. 

For FCC CO, Ishida [17] calculated a density of states (DOS) curve for this phase 
and obtained a very similar DOS curve to  that of the HCP phase. Moruzzi e2 a1 [22] 
also calculated the band structure and related properties of FCC CO in their series of 
calculations. 

The static paramagnetic spin susceptibility of cobalt has been calculated by Gun- 
narsson [23]. Local spin-density functional theory was used to  modernize the Stoner 
model, and the results were produced from various band calculations. Shimizu [24] 
also studied the temperature dependence of the spin susceptibility of FCC cobalt phe- 
nomenologically using model DOS curves. A useful review of magnetism in Fe, Ni  and 
CO is given by Wohlfarth [25]. 

In the next, section, following a brief introduction to  relativistic density functional 
theory and multiple-scattering theory, a new formalism of susceptibility is given. We 
discuss the calculational method in section 3. Some calculations with interpretations 
are presented in section 4. Finally we draw some conclusions in section 5. 
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2. The relativistic generalization of the density functional theory of the 
paramagnetic, static, spin susceptibility 

MacDonald and Vosko [9] ,  Raja.gopal [26] developed the current density functional 
theory for a many-relativistic-electron system in the presence of an external potential 
and magnetic field. MacDonald and Vosko also used the Gordon decomposition of 
the current, neglecting orbital (diamagnetic) effects and set up a theory in terms of 
the charge and ‘spin-only’ magnetization density only. We base our work on this. An 
effective one-electron Kohn-Sham-Dirac equation can be written: 

where Q i ( ~ )  is a 4-spinor and  CY,^ are standard Dirac matrices. n are the 4 x 4 Pauli 
matrices. The effective magnetic field Beff[n,m] is given by 

and couple t o  the ‘spin-only’ part of the current BXC[n ,m]  is obtained in the local 
spin-density functional approximation [23]. 

where 6( r,) is the appropriate exchange-correlation parameter. We used the expres- 
sion given by Gunnarsson and Lundqvist, [27],  i.e. 6(r,) = 1-0.036r,-l.36r,/(l+lOr,), 
r, is the usual parameter of density, defined by r, = ( 3 / 4 ~ n ) ’ / ~  where 71 is the elec- 
tronic density. ad(?-) is a relativistic radial wavefunction for d electrons; l@d(V)l2 = 
[I@t/2(r)12+ 1@i/2(r)12]/2,  where the superscripts denote the value of the total angular 
momentum, j .  The  function of Bxc( r )  for HCP and FCC CO is shown in figure 1. In 
this figure, the full curve indicates B X C ( r )  for HCP CO and the broken curve indicates 
that  of FCC. The difference between the two quantities is small, but not negligible. 

06 OJJ 
r/rmt 

Figure 1. The exchange-correlation function B X c ( r )  as a function of r/rmtr where 
~~t is a radius of the muffin-tin sphere. 
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We now consider a paramagnetic system which is subjected to  a small external 
magnetic field and determine the response of the system. In the linear response theory, 
a Green function solution of the integral equation corresponding to  (1) is given by 

Where Go is the Green function of the paramagnetic system, i.e. with zero effective 
magnetic field Beff. This function is defined in the following way [28]: 

E,,' ~ , ( T ~ ; E ) ~ ~ , ~ ( E ) z ~ , ( T : ; E )  - E, z,(T~; E)JL (T : ;E )e ( r :  - yi) 

- C k J , ( T i ; E ) Z ~ ( T : ; E ) e ( r i  -.I) for i = j ( 5 )  

C,k' 2, (T i  ; E,+;' (E)Zl, (7-5 ; E )  for i # j 
Go(r i1  vi;&) = 

where the index k describes the two quantum numbers (%,mi). K: and mi are the 
eigenvalues of the angular momentum operator k = (8. + 1) and the total angular 
momentum operator j ,  respectively. Z, and J ,  are the regular and irregular solutions 
of the Kohn-Sham-Dirac equation. T; ; , (E)  is the scattering path operator for the 
system between lattice sites i and j ,  introduced by Gyorffy and Stott [29] and defined 
by 

t is a relativistic single-site t ma.trix. Go(q l  E )  is the relativistic KKR structure constant 

We introduce a rotation operator in spin space which we can use to  take into 
[301. 

account the spatial dependence of the magnetic field: 

cr. Beff = Re ( e ,  p)u, Illeff I Ret(el p) (7) 

where Re ( e ,  p) is given by 

This matrix is a special case the general form of the Euler rotation matrix. The angles 
8,  p describe the orientation of Beff with respect to  the crystal axes. 

The magnetic moment m(r)  is given by 

where the trace is over spin space. Finally, (4),  (5) and ( 7 )  are substituted into (9) 
and after taking the appropriate lattice Fourier transform of the T matrix, we obtain 
the following expression 
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where 

and 

The index s denotes the position of an atom in the unit cell. f ( c  - v) is Fermi-Dirac 
distribution function and v is the chemical potential. g i k L l / l ( O l  p) is given in terms of 
Clebsch-Gordan coefficients as follows; 

and 

and 
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In general, the regular solution Rk(r) and the irregular one Q k ( r )  of the Kohn-Sham- 
Dirac radial equation are real functions when the energy is itself real valued. When 
the energy is extended to complex values, as used later, these values also become 
complex. 

A temperature Green function is introduced on taking into account the tempera- 
ture dependence [31]. This is done by the following transformation (see, for example, 
~321): 

where w, is Matsubara frequency, defined by w, = (272 + l)nlcBT, kB is Boltzman 
constant and T is the temperature. Unfortunately, the convergence of this summation 
over the Matsubara frequencies is very slow, and we use the technique introduced by 
Staunton et a1 [12] to  avoid this difficulty. This technique is as follows: 

1 
2kBT  Re - J rkkl (v + iw,; q) dq  ,, %Z 

= 2k,T Re (& J T ~ ~ , ( v  + iw,; q)  dq 
n 

- tk(v + iwn)bkk/ - - Im t k ( & ) f ( v  - E) d& 1 :  J 
i.e. part of the calcuhtion is carried out in the complex plane and part on the real 
axis. At large Matsubara frequencies, T approximates to  the single-site t matrix. In 
practice, when w, > 1 Ryd the term from the Matsubara sum is essentially zero. The 
remaining term involving the single-site t matrix integral is easy to  calculate. 

Consequently, we get a formula for the spin paramagnetic susceptibility. 

and if the stoner condition 

is satisfed, the system is ferromagnetic, where 
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and 

From (18), we can see that this equation has the form of a Stoner-type suscepti- 
bility formula. A corresponding Stoner enhancement factor I is obtained by a ratio of 
equation (21) t o  equation (20). We call this quantity the generalized Stoner parameter. 
It is important to  note that the expressions (18)-(21) depend on not only tempera- 
ture but also on the direction along which the magnetization is being introduced. This 
direction is given by angles 0 and cp .  

3. Calculations 

Equations (20) and (21) require the evaluation of an integral over the Brillouin zone 
(BZ). This integral, particularly for non-cubic systems, is computationally demanding. 
There are two main reasons: the T matrix has many singular points on the real 
energy axis (i.e. where the I<I<R condition is satisfied). These singular points are 
avoided by performing the energy integration in the complex plane. This becomes a 
Matsubara frequency summation. For small Matsubara frequencies, however, the T 
matrix still varies rapidly along various directions q. The second reason is the large 
number of elements of the integrand. A Brillouin zone integral must be carried out 
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for every (6, m j ,  s) element. For example, there are two atoms in the unit cell for 
the HCP structure and taking into account K ,  mj values which include orbital angular 
momentum values 5 2, the T matrix has 36 x 36 elements. Furthermore, in the case of 
the r x r of equations (20) and (21), the number of elements is now 364. Excessive CPU 
time is required if we are to calculate the BZ integral for every element. By exploiting 
a symmetry properties of the T matrix, however, this difficulty can be avoided. The 
summation over s is carried out before the BZ integral and those elements which are 
zero by symmetry are ignored. In this way, the number of elements is reduced to 
manageable proportions. For instance, it is reduced to  36 elements from 36 x 36 ( r )  
and to 8581 from 364 ( r  x T )  for HCP. 

We carried out the BZ integration using the prism method [33]. For the irreducible 
zone of the HCP and FCC BZ, we chose 38 and 36 prisms respectively. Each prism was 
divided into 16-42 planes between an origin and an edge of the prism. As mentioned 
early in this section, for small Matsubara frequencies, many divisions are used. On the 
other hand, for large frequencies, fewer are needed. The number used depends upon 
the energy values. In table 1, tests of the convergence of this integral with respect to  
energy and divisions are shown. The integrand is r (v  + iw,) and the integration is 
taken over only one prism. The tabulated values show a ratio with the value achieved 
using 95 divisions. As is seen from this table, sufficient accuracy is achieved with 
just 16 divisions for Im(energy;&) = 0.05 Ryd. On the other hand, for the case of 
Im(&) = 0.005 Ryd, more than 42 divisions are needed for the same accuracy. Strictly 
the integral of r x r requires a great number of divisions per prism, The expense, in 
terms of computer resources of using many more divisions is not, justified nor necessary, 
since it is the Matsubara sum of these terms which is the important quantity. 

Table 1. Convergence with  respect to the number of divisions ( N D )  for one B Z  line 
integral. The results are expressed as rat,ios with respect to that for 95 divisions. 

Im(E) N D  = 8 16 32 42 95 

0.05 0.987 1 .OW 038 1 .OOO 008 1,000 002 1 .O 
0.005 0.560 0.704 0.960 0.997 6 1 .o 

The BZ integration is carried out for an irreducible segment, i.e. 1/24th for HCP 
and 1/48th for FCC (or cubic) systems. It is summed over the whole BZ by appro- 
priate transformations. Firstly, the K ,  mj representation is transformed to the lma 
representation [30] 

kk' 

Secondly, a space symmetry transformation R;,, and spin transformation S2ul 
are made. Then an inverse transformation of (22), i.e. lma -+ K m .  representation, is 
carried out.  Finally, the BZ integral is completed by summing over each segment. In 
short. 

3 
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where the spin transformation matrix S2u, is written as 

4. Results and discussion 

We obtained SCF muffin-tin potentials for both HCP and FCC paramagnetic cobalt 
from the non-relativistic APW method. In order to estimate the Fermi energy, we 
calculated relativistic band structures from these potentials by using a fully relativistic 
KI<R method. Although the input potentials are calculated non-relativistically, this 
is a reasonable approximation beca.use cobalt is a light element. Relativistic band 
structures are shown in figure 2, and the density of states (DOS) curves are shown in 
figure 3.  

I I  I - 
1 M T ' n  T T A A  R L S ~ H  s A 

Figure 2. Relativistic band structure, of (U) HCP CO and (b)  FCC Co. 
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Figure 3. Density of states curve of HCP (a) and FCC CO ( b ) .  Broken curves indicate 
the integrated dei1sit.y of states (number of states). Arrows show the Fermi energies. 

The Fermi energies are 0.711 Ryd (HCP) and 0.819 Ryd (FCC). The DOS a t  the 
Fermi energy N ( E ~ )  are 46.7 and 27.2 states/Ryd atom for HCP and FCC CO, respec- 
tively. These values are consistent with other band calculations. As shown later, we 
obtained a generalized Stoner-enhancement factor of about 0.037 for both phases. At 
low temperatures (< 4345 I<) the calculated susceptibility from (18)-(21) is nega- 
tive, for HCP CO, indicating that this system is ferromagnetic. FCC CO also produces 
a negative-valued susceptibility but of smaller magnitude suggesting that this sys- 
tem is close t o  the para/ferromagnetic crossover. In fact, the non-relativistic results 
of Moruzzi et a1 find FCC CO to  be paramagnetic (their results are N ( E ~ )  = 27.3 
states/Ryd atom and I = 0.03G [22]). Figure 4 shows the inverse susceptibility as 
a function of temperature. The transition temperatures are 4345 K and 2295 K for 
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HCP and FcC CO respectively. As expected, these values are too high compared with 
experimental values (1388 K,  FCC [13]). In general, i t  is insufficient to  take into ac- 
count only Stoner excitations for estimates of the Curie temperature and the behaviour 
of metals a t  finite temperatures. It is necessary to include spin-wave excitations, a 
magnon-electron interaction and a spin fluctuation effects [35,36]. 

, 

P -  (a) /- 
n 
2- I ? -  
;;" 

k 
1 -  

, 

(4 
P -  

a 

n 
2- I ? -  
;;" 

k 
1 -  

4;. "W,," BOO 4100 

T t K l  

"W,,' 

T t K l  

xio-3,  , 1 

I J 
Figure 4. 
temperature ( a )  for HCP CO, (b)  for FCC Co. 

The inverse of the paramagnetic spin susceptibility as a function of 

We show a temperature derivative of the inverse susceptiblity dX-'/dT for FCC 
CO in figure 5. If x follows a Curie-Weiss law exactly, this quantity should be constant 
with changing temperature. A deviation from the Curie-Weiss law is observed experi- 
mentally [37]. Coincidentally the temperature derivative curve which we found is also 
not constant. If we follow the same sort of analysis as Shimizu [24], the deviation from 
Curie-Weiss behaviour is smaller than that found experimentally. 

T Ckl 

Figure 5 .  
F C C  Co. 

The temperature derivat,ive of the inverse susceptibility, dx-'/dT for 

The temperature dependence of the unenhanced susceptibility is shown in fig- 
ure 6. The generalized Stoner enhancement factor I which is obtained by I ( T )  = 
Ixo(T)/xo(T), is also shown in this figure. The factor I ( T )  depends on temperature, 
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Figure 6. Temperature dependence )io ( T ) ,  Ixo(T) and the generalized enhancement 
factor I ( T ) .  The full curves are for HCP CO and the broken curves for FCC Co. 

but the effect is very small. The temperature dependence of I for HCP CO is larger 
than that  for FCC CO and the difference between the maximum and minimum values, 
AI,  is 0.0008 for this temperature range. Averaged values of I are about 0.0376 for 
FCC and 0.0365 for HCP. There is a difference of about 0.001 between FCC and HCP 
Co. I t  seems that  this is due to the difference between the exchange-correlation func- 
tions as shown in figure 1. Although this difference is small, it is very important in 
the Stoner condition (19). Because, in the case of FCC CO, if value of I is 0.0365, the 
Stoner condition (19) is not satisfied. 

A spatial dependence of I x o  011 HCP CO is shown in figure 7(a ) .  On the vertical axis 
is the value of [ I x o ( B ,  p)/Ixo(B = 0,  p = 0) - 11. A ferromagnetic state is stable when 
this value has its largest value a t  particular angles B and q. The magnetization thus 
grows along the direction defined by these angles 0 ,  y .  Our results suggest that  the easy 
axis changes with temperature. For instance, the value of this quantity a t  T = lGO0 I< 
decreases as B increases from 0' to  90'. This means that 0 = 0' (c axis) defines the 
easy axis. On the other hand, a t  T = 4600 K,  the value is larger a t  0 = 90' and this 
means that  the easy axis lies in the ab plane. However, there was no dependence on the 
angle y .  Moreover, no directional dependence for FCC CO, a cubic system, appeared 
within the accuracy of these calculations. Magnetic anisotropy is a result of spin-orbit 
coupling. Our results were obtained from fully relativistic calculations. We did not 
treat the spin-orbit coupling as a perturbation. Nevertheless, no anisotropy effects 
are evident for cubic systems and for similar reasons, no dist,inction between angles 
within the a6 plane for HCP systems can be made. We think that this is inherent 
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e (0 - 2 '  I 

Figure 7. (a) shows the angular dependence of [ Ixo (O,  c p ) / l ; y ~ ( O  = 0 , 9  = 0) - 11 
for HCP CO and (b)  shows the the temperature dependence of the same quantity. 

in the linear response formalism for the cubic systems. In order to confirm this, we 
evaluated the contribution to the susceptibility from one Matsubara frequency (see 
equations (20) and (21)) for a heavy element with cubic structure, in which spin-orbit 
coupling effects are large. No anisot,ropy effects were found here eit<her. This means 
that the absence of anisotropy effects arises from the symmetry properties of the 7 and 
T x T matrices, and does not depend on their numerical values. It seems to  indicate 
that a fully relativistic linear response version of the paramagnetic spin susceptibility 
is isotropic for the cubic systems. 

Fig 7 ( b )  shows the temperature dependence of the anisotropy effects found for 
HCP Co. As shown in this figure, the easy axis is the c axis below a temperature of 
T = 2500 I<, but this easy axis changes into the ab plane above this temperature. 
A full curve indicates the result for 6 = 90' and a broken curve indicates that  of 
6 = 45'. Unfortunately, there is no experimental evidence to support our results, 
because HCP CO is structurally unstable in this tempera.ture range (melting point 
= 1765 K). But the temperature dependence of the magnetocrystalline anisotropy 
constants have been observed by several authors [38-401. Their results showed the c 
axis ceases to  be the easy axis above about 500 I< and the easy axis lies along a cone 
of semivertical angle. This indicates that if cobalt would remain in the HCP phase for 
higher temperatures, then its easy axis might lie within the ab plane as it approaches 
the magnetic phase transition temperature. In figure 7(b)  the easy axis lies in the ab 
plane below about 800 I<. At low temperatures, ferromagnetic HCP cobalt's easy axis 
lies along the c axis. Clearly a complementary calculation of the magnetic anisotropy 
energy of ferromagnetic HCP cobalt needs to be carried out to complete the picture. 
This work is in progress. 

We should point out that we did not include any temperature dependence to  the 
axial ratio c / a  and the chemical potential. These might effect the results. Szpunar 
and Strange [41] showed with a semi-relativistic band structure calculation that the 
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magnetic properties change as the axial ratio is varied for HCP Co. Strange et a/ [42] 
showed that  the easy axis changes with axial ratio of iron on a tetragonal lattice. 
Ono and Maeta [43] also pointed out that  the temperature dependence of magne- 
tocrystalline anisotropy in HCP CO has a correlation with the change in the lattice 
parameter ratio from their experimental studies. The change of the chemical poten- 
tial with temperature is proportional to the logarithmic derivative of the density of 
states with energy, which is very large for HCP Co. This temperature dependence of 
the chemical potential might also affect the anisotropic effects. 

The  temperature dependence of the anisotropy of the paramagnetic spin suscep- 
tibility which we find, is due to  Stoner-like excitations which include the effects of 
spin-orbit coupling. However, as expected this spatial dependence is a very small 
value. We look forward to  calculations of the magnetic anisotropy of HCP cobalt in 
the ferromagnetic phase which should complement our paramagnetic spin susceptibil- 
ity calculations. 

5 .  Conclusion 

We have given a new formalism for the static paramagnetic spin susceptibility. This 
formalism includes a dependence upon the spatial direction of the induced magnetiza- 
tion. This is achieved by taking into account fully relat,ivistic and the spin-polarized 
effects based upon a first principles theory. It can ultimately be extended to  include 
dynamic effects. We applied this theory t80 both HCP and FCC Co. As expected the 
estimated Curie temperatures are too high in comparison with experimental values. 
Spin-wave excitations, magnon-electron interactions and the spin fluctuation effects 
have been neglected and this is probably the main cause of the discrepancy. 

The anisotropy of the susceptibility does not appear for FCC Co. It seems that this 
is inherent in the fully relativistic linear response formalism for the cubic systems. On 
the other hand, a temperature dependence of the anisotropy of the susceptibility is 
obtained for HCP Co. This is a novel result. Unfortunately there are no experimental 
results for the paramagnetic susceptibility for HCP Co. 

There is some small inaccuracy in the low-temperature range due to  the numerical 
calculations in the BZ integral but this does not effect the main findings: an anisotropy 
of the susceptibility which varies with temperature. We hope tfo apply this theory to  
paramagnetic metals for which experimental data are available, in the near future. 
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